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ABSTRACT 

Space resection is a technique for calibrating camera parameters, mainly the angle and the position, by looking 

at the images of GCPs (points on the ground with known position) on a picture taken by the camera and is an 

indispensable technique in the field of satellite image processing. In this paper we describe a new algorithm for 

space resection. First, and most important, we derive space resection equations in a new form. Specifically, we 

split the least-square equation into two parts by square completion: one is an equation only of the angle; the 

other is an explicit formula to calculate the position directly from the angle. We also derive formulae for the 

variances of the errors of the least-square estimators. We also describe a method for numerical solution of the 

angle equation. The difficulty is that the equation has a few tens of fake solutions. To find the true solution 

(global minimum) among these fake solutions, we propose some techniques of nonlinear optimization. Evaluation 

of the proposed method by computer simulation shows that the global minimum is obtained efficiently when 

four or more GCPs are available. The simulation results also show that the variance formulae are valid, and 

this means we can guarantee the precision of the estimated camera parameters. The proposed optimization 

techniques are applicable to a wide range of nonlinear optimization problems other than space resection. 

1 INTRODUCTION 

1. 1 Background and Summary 

Space resection, a technique for finding the angle 

and the position of a camera from a picture taken 

by it, is indispensable in the field of satellite image 

processing. 

It is usually formulated as a nonlinear least-squares 

estimation, but is not easy to solve because of its 

search space is large and there is a large number of 

local minima. In this paper we focus on the follow

ing aspects of space resection ( though some are in the 

appendix). 

• New equations: 

We split the conventional equation into two small 

parts by some elementary linear algebra. 

• Numerical solution: 

We propose "absolute Newton method" and some 

other techniques of nonlinear optimization. 

110 

• Error analysis: 

We derive practical variance formulae and prove 

the approximate efficiency of the estimator. 

A numerical simulation shows that the proposed nu

merical solution is very stable and that we can guar

antee the precision of the estimator by the variance 

formulae. 

1.2 The Problem of Space Resection 

First let us introduce some notations. The camera 

model is illustrated in Fig.I. X 0 is the position, or 

the viewpoint, of the camera. The orthonormal frame 

R = (e1, e2, ea) represents the orientation of the cam

era. The image plane is spanned by e2 , e3 and is sep

arated from X 0 by the focal length c. A GCP (ground 

control point) is a point on the ground whose posi

tion (latitude, longitude, and height) is known in ad

vance. Each GCP X; is imaged onto the point x; on 

the plane by the central projection with its center X 0 • 



The variances of the measurement error of Xi and Xi 
are respectively P and Q. 
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Fig. 1: Camera model. 

With this notation, the main problem in this paper 

can be described as follows: 

GivenasetofGCPdata{Xi,xi}(i = 1,2, .. ·), 
find the position Xo and the orientation R of 

the camera. 

We assume that the values of c, P, and Qare known. 

See §A.1 for more detail on the notation. 

2 NEW EQUATIONS 

In this section we derive new equations of space 

resection. The outline of the argument is as follows. 

We represent the collinearity condition as an orthog

onality condition (1) rather than as the conventional 

parallelism condition so that the square-error function 

(2) becomes a quadratic form of X 0 • By square com

pletion with respect to Xo, the least-square equation 

splits into two parts: (5) and (6) . 

, -~ 
Posi~~on (\ ~ 

"-.._ / -CP i mage xi l Coo r d i nate trsf . 
(~/ ! (rotation) R 

, :,;:,:?:'~L: 
XOXi II X~ .L (Conventional) ; GCP xi ; 

~ XOXi .l <XOxi> (New) • .............. ' 

Fig. 2: Collinearity condition. 

The collinearity condition states that the direction 

from the viewpoint to a GCP XoXi and to its image 

x;xi coincide, or equivalently, XoXi and the orthog

onal complement (X;xi).1. are orthogonal (Fig. 2). 

Thus letting Ai be a basis of (X;xi).1. as described in 
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§A.l and considering the coordinate transformation 

R, we can write the condition as 

(R(B)Ai)1 · (Xi - Xo) 0, (1) 

In general, because of errors the left-hand side of (1) 

does not vanish, So we consider the following square

error function: 

eo(B, Xo) 

where 

B 

C 

D 

L {LHS of (1)}1 s;- 1 {LHS of (1)} 
i: GCP 
X~ B X0 - 2 C' X 0 + D, 

L (Ai R)' si-1 (Ai R) 

L (Ai R)' s,-1 (Ai RX;) 

L (Ai Rxi)' s;: 1 (Ai RXi) 

(2) 

and Si is a given weight for the i-th GCP (here we 

simply set this weight to be the unit matrix; also see 

§A.2.4) . 
Since B is clearly positive definite in generic cases, 

we can deform the quadratic form (2) by square com

pletion as eo = IIB1l 2 Xo - n- 1/ 2 Cll 2 + D - C' n-1c. 
The minimizing X 0 is n-1c, regardless of R = R(B). 
Therefore if we define 

e(B; {Xi,xi}) 

h(B;{Xi,Xi}) 

the least-square equation splits into two parts: 

8e (B) 
80 

Xo 

0 

h(B) 

(3) 

(4) 

(5) 

(6) 

Equation (5) is an equation only of the angle B and 

(6) is an explicit formula of the position X 0 . The new 



equation (5) is expected to be much easier to solve 

than the conventional one [Fu et al., 1987] because its 

search space is homogeneous and much smaller than 

that of the conventional one. 

3 NUMERICAL SOLUTION 
In this section we propose a numerical solution to 

find the desired solution of (5), the global minimum 

of the square-error function (3). In §3.1 we describe 

the outline of the procedure, and in §3.2 and §3.3 we 

describe and justify some techniques involved: "po

tential addition" and the "absolute Newton method." 

See §A.2 for other techniques and analysis. 

3.1 Outline 

Fig. 3 shows the flow of the procedures: minimal 

points are found one after another and then the most 

desirable one is selected. 

Square error function 
e = e ( e) 

Initial value setting: 
0=00 

Global search 
(potential addition) : 

eL=e • pL 

Local search 

----------------, 

---------------- .. 

(absolute newton method) : ····--
Ve L=O-V e =O 

Selection: 0 EL 

e -minimizing 0 

Fig. 3: Flow of numerical solution. 

We choose the initial value of iterative method ef

ficiently, according to some geometric considerations 

(§A.2.1), and then we add a "potential term" to the 

square-error function. It plays a role of a "repulsive 

force" against already-found solutions, and thus we 

can find different solutions (§3.2) . We then search 

for a minimal point of e by using a modified Newton 

method that converges to a minimal point of e, not 

to a saddle or maximal point (§3.3). The minimal 

point thus found is added to the list of solutions L. 
By repeating the above 3 steps we can list up major 

minimal points. Finally we select the global minimum 

from the list L. 
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3.2 Global Search- Potential Addition 

To find the global minimum of the square-error func

tion, we propose a simple method of "potential addi

tion." The idea is very similar to that of the "Tun

neling Algorithm" [Levy et al., 1985], though the im

plementation is slightly different. The procedure is as 

follows: 

1. Apply local search (as described in §3.3) to the 

modified square error function eL below. 

2. Apply local search again to e, this time with the 

initial value equal to the result of step 1. 

3. Add the result of step 2 to the list L. 

The modified square-error function eL is defined as 

e(0) · pL(0) 

1+ LABll!(0-0k)l/2, 
9kEL 

where Lis the list of minimal points of e already found 

and where A and B are respectively an appropriate 

weight and scale factor. PL has poles at points E L. 

.,,, l:DL 
: e 

"'"V~ 
e 

'"'" 1/ ~!~ 
=c·pL l_:~iL 

f f 0 

Local minimum of e Global minimum 
already foundE L 

Fig. 4: Potential addition. 

With the above procedure we can find a minimal 

point other than that of L in Fig. 3, as explained 

below (Fig. 4). In a neighborhood of L, eL has no 

minimal point because p L grows rapidly. In a region 

away from L, on the other hand, the minimal points 

of e and eL are close to each other because there PL 

is nearly constant. If 0 ¢ L is the global minimum of 

e, it is almost the global minimum of eL as well (and 

vice versa), since the values of nonnegative functions 

e and eL are both approximately O at 0. 



PL plays the role of a potential field and is thus 

a source of "repulsive force" against L. One of the 

advantages of the above procedure is that it is deter

ministic. 

3.3 Local Search - Absolute Newton 

Method 

To find a local minimum of a given smooth function 

f = f(0), we propose an "absolute" Newton method. 

It is just the Newton method [Kahaner et al., 1989] 

applied to V f, with the Hessian replaced by its abso

lute value in the recurrence formula: 

(7) 

where Hf = ( OiOj f) is the Hessian of the function 

f and where I · I stands for the absolute value of a 

symmetric transformation (i.e., each eigenvalue is the 

absolute value of eigenvalue of the operand). 

By using the recurrence formula (7), we can search 

for only the minimal points among all the solutions of 

V f = 0. Actually, it is easy to see that the only stable 

fixed points of (7) are the solutions of V f = 0 with 

positive definite Hessian (i.e., the minimal points), 

while the ordinary Newton method [Kahaner et al., 

1989] has all the (nondegenerate) solutions of V f = 0 

as its stable fixed points. Near a minimal point the 

results of the absolute Newton method coincides with 

the ordinary Newton method, so it converges rapidly. 

See §A.2.2 for related arguments. 

4 VARIANCE FORMULAE 

In this section we derive formula for the variance of 

the least-square estimator. See also §A.2.4 for some 

properties of the estimator. There are some errors 

in the observed values of the GCP data {Xi, xi} and 

the estimated values of the camera angle 0. We de

note their true values by Xf, x~, 0° and their errors by 

6.Xi = xi - xr' 6.xi = Xi - x~' 6.0 = 0 - 0°. 
Both the true values {{Xf, x?}, 0°} and the ob

served/estimated values { {Xi, xi}, 0} satisfy equation 

(5). Thus, considering the Taylor expansion of the 

gradient of the square-error function g(0; {Xi, xi}) = 
Ve and ignoring the higher-order terms, we can write 
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8g ~ { 8g 8g } 
80 6.8 + ~ 8Xi 6.Xi + 8xi 6.xi = 0, (8) 

i 

and we can easily obtain a formula for Vo = Var(6.0): 

Vo = L Ei P E 1 i + L Fi Q F 1 i· (9) 

where Ei = ( U )-1 -/J-:, Fi = (-U )-l -/t- The for

mulae for Var(Xo), Cov(0,X0 ), etc. can also be de

rived in a similar way, though here we omit the details. 

5 EVALUATION 

In this section we describe some numerical simula

tions used to examine the numerical solution described 

in §3 and the error analysis described in §4. 

5.1 Simulation Settings 

The setting of the simulation was as shown in Fig. 

5. 

(Satellite/Camera) 

i··················:*-w oint ·· \'- Image plane 
Focal length 

c=l m 

Height 
480 km 

\ \ 

\ .......... . 
GCP image error 
Q' 12 c,:,0. 5 pixel 

(resolution ~3 m) 

\ ........... . 

\ \\ Inclination 
\ \ 30 deg. 

\ '\! 
( Ground) ~---------~·\1-;············ ... 

__ j...... • ) 
GCP error ·•.... • • .. ----· 
P in.::::;-o. 5 m ·•··••······· 

Range=3 km 
#GCP=3-100 

Fig. 5: Simulation settings. 

In each simulation we first generated a set of imita

tion GCP data {(Xi, xi) : i = 1, 2 ···}according to the 

setting and then made from them the list of solutions 

Lin the way described in §3. We set the maximum size 

of L to be 5, and the GCPs were distributed randomly 

within a radius of about 3km. We ran 100 simulations 

to calculate statistics for each number of GCPs. 



5.2 Stability of Numerical Solution 

Table 1 lists, for various numbers of GCPs, the num

ber of times (in 100 simulations) that the desired so

lution was Found/Chosen out of the list of solutions 

L. 

GCPs II 3 4 5 10 20 50 100 

Found 100 100 100 100 100 100 I 100 I 
Chosen 60 95 100 100 100 100 I 100 I 

Table 1: Stability of numerical solution. 

The desired solution was always found regardless of 

n, and it was correctly chosen when n 2: 5. When the 

techniques described in §3 were not used, the desired 

solution was less frequently Found/Chosen. 

5.3 Validity of Variance Formulae 

As measures of the validity of the variance formulae 

in §4, we use the statistics ao and ax0 defined below. 

Let 0 be the true value of camera angle, 0 its estimated 

value, and Vo the estimated variance of 0 calculated 

by (9). Define ao = (0 - 0)' 110- 1 (0 - 0). Define Xo, 
Xo, Vx0 , and ax0 in a similar way. If the variance 

formulae are valid, ao and ax0 will both obey the x2 

distribution with 3 degrees of freedom. 

Cumulative distribution 

0.8 

0.6 

~(3)-

Theoretic x (2>-···· 
Measured ae o 
Measured a,w + 

0.4 

0.2 

2 4 6 10 12 

Statistic, 

Fig. 6: Distributions of statistics a*, x2 • 

Fig. 6 shows the distributions of ao, ax0 actually 

measured by the numerical simulation when #GCP=5, 

together with the theoretic x2 distributions. The dis

tributions of a8 , ax0 fit well into x2 (but with a degree 

of freedom 2, rather than 3). 

6 CONCLUSIONS 

We derived simplified equation of space resection 
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(§2). The proposed numerical solution (§3) enables us 

to find the global minimum of the square error func

tion stably and efficiently, something that has con

ventionally been rather difficult. We also derived and 

showed the validity of variance formulae (§4) that en

able us to guarantee or predict the precision of the 

estimators. Thus we have developed a practical sys

tem of space resection ( at least in cases where there is 

no lens distortion). 

We have also shown theoretically that these results 

are almost the best possible in the situation consid

ered. The techniques of nonlinear optimization in §3 

- the absolute Newton method and others - are appli

cable to a wide range of nonlinear optimization prob

lems. 
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APPENDIX 

A.1 Notations 

Most notations used in this paper are listed in Ta

ble 2 and also illustrated in Fig. 1. SO(3) is a special 

orthogonal group and T 3 is a torus. "1" stands for 

matrix transposition. In general, a notation with su

perscripts such as Bkl represents the component of the 

matrix or vector B. 

Some of these notations may need more concrete 

descriptions. They are 

I 



I Notation II Meaning Coordinate System Value 

Xo Camera position Ground R3 

xi i-th GCP Ground R3 

C Focal length Camera R(> 0) 
Xi Image of i-th GCP Camera R3 

A;= A(x;) A basis of orthogonal complement of (xi) Camera 3 x 2 matrix 

(actually, rank(A;) = 2 and A~· x; = 0) 
R = R(0) Camera orientation (Ground) SO(3) 

0 Camera orientation parameter (Ground) T 3 = (R/27rZ) 3 
p Variance of measurement error of GCPs Ground 3 x 3 matrix 

Q Variance of measurement error of GCP images Ground 2 x 2 matrix 

S; Weight of i-th GCP - 2 x 2 matrix 

r Typical distance between camera and GCPs Ground R(> 0) 
(F) Vector space spanned by (columns of) matrix F - -

Table 2: List of notation. 

R(0) 

Xi 

A; 

( 
( 

1 0 

0 cos81 

0 sin 01 

cos02 

0 

- sin 02 

- ,;no~ ) 
cos81 

0 ,;no~ ) 
1 

0 cos02 

sin83 ( 
cos0

0

3 - sin 0
0
3 

0
o
1 

) 
cos03 

( x} x? 
i 

( ~ 0 

C 

-c y 
x} )I 
x? 

i 

X 

X 

A.2 Supplementary Arguments Related 

to the Numerical Solution 

A.2.1 Initial Value Setting: We describe how 

to set the initial value Bo in the "Initial Value Set

ting" stage of the numerical solution (Fig. 3). Let 

L = { 01 , • · · , 0k} be the list of solutions of (5) already 

found, k = #L be the size of the list ( with the ini

tial values 0, 0 respectively), h = h(0) be the position 

function (6), and T1 , T2 be transformations like those 

described in Fig. 7. Then the procedure is this: 

1. Bo:= { T1(8k) 
given value ( e.g. 0) 

if k > 0 

if k = 0 

2. If height of h(0o) < 0 then 00 := T2 (00 ) 

3. If :30; E L near 00 then 00 := given value 
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z ~Tl~ b e 
elution 

' X 
y \-•• 

•, .. 

Tl: Rotation and motion to the symmetry point 
wrt z axis 

T2: 180 degrees rotation around Z axis and 
motion to the symmetry point wrt XY plane 

Fig. 7: Four almost equivalent camera locations. 

The above procedure is supported by the following 

geometrical considerations. Since the visual angle of 

the satellite camera is fairly small, a central projection 

differs from the orthogonal projection only by a scale 

factor. Thus if the GCPs are distributed in a horizon

tal plane, we get similar pictures from four viewpoints 

(A)-(D) like those in Fig. 7, and correspondingly the 

square-error function (3) has four minimal points. 

With the above procedure, we can find possible solu

tions (A), (B) (step (1)) and omit searching for phys-



ically impossible solutions (C), (D) (step (2)). where Ji~!=!(··· x; + ~ · dk, · · · x; + ~ · d1, · · ·), H = 
f (· · · xi+~-dk, · · · ); and the coefficients dk, wl, wf, w;: 

A.2.2 Number of Solutions - Background of are as in Table 3. 
Absolute Newton Method: Below we estimate the 

number of solutions of (5), Ve= 0, by some topolog

ical (Morse theoretic [Milnor, 1963]) considerations. 

As in §3 we regard e as a function on the space 

of camera angle T 3 • Let m; be the number of (non

degenerate) critical points of e with index i and let 

B; = dimHi(T3 ) be the i-th Betti number of T 3 . 

Then the following holds (rigorously, except for the 

following item 1): 

1. As a function on SO(3), (3) has m 0 ~ 4 minimal 

points (§A.2.1). 

2. The mapping degree of R: T 3 ----t S0(3) is 2. 

3. The Betti numbers of T 3 are Bo = B3 = 1, B1 = 

B2 =3. 

4. E;(-l)k-im; > E;(-l)k-iB; for 'r:/k (Morse's 

inequality). 

By 1 and 2 the number of minimal points of e is about 

m 0 • degR = 8. By 3 and 4 we get m 1 :2: mo + B1 -

Bo :2: 10. Applying the arguments above to -e we get 

m 2 :2: 10, m 3 :2: 8. Summing up the above inequalities 

we get 

#( all the critical points) > 36 

#(minimal points) ~ 8 

As mentioned in §3.3, the former is the number of 

stable fixed points of the ordinary Newton method and 

the latter is that of the "absolute" Newton method. In 
this sense the above estimation shows the advantage 

of the "absolute" Newton method over the ordinary 

one. 

A.2.3 Numerical Differentiation: Numerical so

lution (§3.2) and error estimation (§4) require a num

ber of partial derivatives. To calculate the partial 

derivatives, we wrote a program implementing the fol

lowing numerical differentiation: 

of 
OX; 

1 
~ 'E wtH 

k=l,·· ·4 

{ 
1 '°' d fk K'1" L..,k=1, .. 4 wk i 
1 '°' n nfkl 

fi2 L..,k,l=l .. -4 Wk Wl ij 

if i = j 
otherwise 
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I k II 1 2 3 4 

dk 1 -1 1/2 -1/2 
wl k -1/6 1/6 1/8 -1/8 
wd k 4/3 4/3 -4/3 -4/3 
wn k -1/36 1/36 8/36 -8/36 

Table 3: Numerical differentiation coefficients. 

One of the advantages of numerical differentiation 

is that we can save a great amount of labor and time 

in prototyping and development, since we do not need 

to write a program for each of a large number of par

tial derivatives. Numerical simulation shows that the 

numerical differentiation error amounts to less than 

0.1% of the whole space resection error. 

A.2.4 Efficiency of the Estimator: The least

square estimator 0, the global minimum of the square 

error function (3), is the best possible in the sense that 

it is unbiased (i.e., the expected value is 0) and effi

cient (i.e., the variance is equal to the Cramer-Rao's 

lower bound). To show this, we assume below that 

the errors of the observables are independent O mean 

Gaussian and that the second-order terms are negligi

ble. We also assume appropriate regularity. 

The unbiasedness of 0 is clear from (8) and the un

biasedness of each observed value. 

It is well known that the maximum likelihood es

timator is asymptotically efficient [Wilks, 1962], and 

it is easily seen to be actually efficient in the linear 

Gaussian case. Thus for the efficiency, it is enough to 

show that 0 is the maximum likelihood estimator. 

The variance ¼ of the error of the collinearity con

dition (1) is easily found to be 

(RAi)' P (RA;) + {e;(X; - X0 )} 2 Q 

In a situation typical in satellite image processing (the 

visual angle is small; P, Q are isotropic; etc), the 

above ¼ can be regarded as a constant "c2 • P + r 2 • Q" 

near the solution, which is a scalar independent of i. 

Thus if we simply set S; = unit matrix in (2) as we did 

in §2, the square-error function (3) differs from the log

arithmic likelihood function only by a constant. This 

implies the efficiency of 0. D 
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